Structure-based nuclear import mechanism of histones H3 and H4 mediated by Kap123
نویسندگان
چکیده
Kap123, a major karyopherin protein of budding yeast, recognizes the nuclear localization signals (NLSs) of cytoplasmic histones H3 and H4 and translocates them into the nucleus during DNA replication. Mechanistic questions include H3- and H4-NLS redundancy toward Kap123 and the role of the conserved diacetylation of cytoplasmic H4 (K5ac and K12ac) in Kap123-mediated histone nuclear translocation. Here, we report crystal structures of full-length Kluyveromyces lactis Kap123 alone and in complex with H3- and H4-NLSs. Structures reveal the unique feature of Kap123 that possesses two discrete lysine-binding pockets for NLS recognition. Structural comparison illustrates that H3- and H4-NLSs share at least one of two lysine-binding pockets, suggesting that H3- and H4-NLSs are mutually exclusive. Additionally, acetylation of key lysine residues at NLS, particularly H4-NLS diacetylation, weakens the interaction with Kap123. These data support that cytoplasmic histone H4 diacetylation weakens the Kap123-H4-NLS interaction thereby facilitating histone Kap123-H3-dependent H3:H4/Asf1 complex nuclear translocation.
منابع مشابه
H4 replication-dependent diacetylation and Hat1 promote S-phase chromatin assembly in vivo
While specific posttranslational modification patterns within the H3 and H4 tail domains are associated with the S-phase, their actual functions in replication-dependent chromatin assembly have not yet been defined. Here we used incorporation of trace amounts of recombinant proteins into naturally synchronous macroplasmodia of Physarum polycephalum to examine the function of H3 and H4 tail doma...
متن کاملMultiple pathways contribute to nuclear import of core histones.
Nuclear import of the four core histones H2A, H2B, H3 and H4 is one of the main nuclear import activities during S-phase of the cell cycle. However, the molecular machinery facilitating nuclear import of core histones has not been elucidated. Here, we investigated the pathways by which histone import can occur. First, we show that core histone import can be competed by the BIB (beta-like import...
متن کاملObservation of histone nuclear import in living cells: implications in the processing of newly synthesised H3.1 & H4
We present here a cytosolic tether-and-release system to study the import and dynamics of newly synthesised nuclear proteins. Release is gated by rapamycin-induced recruitment and activation of a viral protease, with cleavage of a peptide linker releasing the tethered cargo. We use this system to investigate nucleo-cytoplasmic divisions in the histone H3.1 & H4 deposition pathway, revealing tha...
متن کاملNuclear import of the histone acetyltransferase complex SAS-I in Saccharomyces cerevisiae.
The protein complex SAS-I links histone acetylation to the assembly of repressed chromatin in Saccharomyces cerevisiae. Sas2p, the histone acetyltransferase subunit of SAS-I, forms a complex with Sas4p and Sas5p, which are both required for maximal complex activity. In this study, we found that Sas4p was the central subunit of the SAS-I complex, bridging Sas2p and Sas5p. We demonstrated that th...
متن کاملThe impact of solubility and electrostatics on fibril formation by the H3 and H4 histones.
The goal of this study was to examine fibril formation by the heterodimeric eukaryotic histones (H2A-H2B and H3-H4) and homodimeric archaeal histones (hMfB and hPyA1). The histone fold dimerization motif is an obligatorily domain-swapped structure comprised of two fused helix:β-loop:helix motifs. Domain swapping has been proposed as a mechanism for the evolution of protein oligomers as well as ...
متن کامل